Fonction Logarithme (6)
Exercice 1 tp
Calculer
|   lim +∞  | 
						1 - lnx | 
| x | |
|   lim +∞  | x - ln(x²-1) | 
Correction
|   lim +∞  | 
						1-lnx | = |   lim +∞  | 
						1 | - | ln(x) | 
| x | x | x | 
On a
|   lim +∞  | 
						1 | = 0 |   lim +∞  | 
						ln(x) | = 0 | |
| x | x | 
| Donc |   lim +∞  | 
						1-lnx | = 0 | 
| x | 
|   lim +∞  | 
						x - ln(x²-1) | = |   lim +∞  | 
						x - ln(x²(1 - | 1 | ) | 
| x² | 
| = |   lim +∞  | 
						x - ln(x²) - ln(1 - | 1 | ) | 
| x² | 
| = |   lim +∞  | 
						x (1 - 2 | ln(x) | ) - ln(1 - | 1 | ) | 
| x | x² | 
| On a |   lim +∞  | 
						ln(x) | = 0 | 
| x | 
| Et |   lim +∞  | 
						ln(1 - | 1 | ) = 0 | 
| x² | 
Donc
|   lim +∞  | 
						x-ln(x²-1) = |   lim +∞  | 
						x = +∞ |