Calcul des Limites (1)
Rappel
| lim x→+∞ | x = +∞ | lim x→+∞ | x³ = +∞ | 
| lim x→+∞ | x² = +∞ | lim x→+∞ | xn = +∞ ; n∈IN* | 
Et on a aussi
| lim x→0 | x² = 0 | lim x→0 | x³ = 0 | 
| lim x→0 | xn = 0 | n∈IN* | 
| lim x→-∞ | x³ = -∞ | 
 
		| lim x→-∞ | x² = +∞ | 
 
	
		| lim x→-∞ | x² = +∞ | 
| lim x→-∞ | x³ = -∞ | 
Si n est pair et non nul
| lim x→-∞ | xn = +∞ | 
Si n est impair
| lim x→-∞ | xn = -∞ | 
| lim +∞ | 1 | = 0 | lim +∞ | 1 | = 0 | 
| x | x² | 
| n∈IN* | lim +∞ | 1 | = 0 | 
| xn | 
| lim -∞ | 1 | = 0 | et | lim -∞ | 1 | = 0 | 
| x | x² | 
| n∈IN* | lim -∞ | 1 | = 0 | 
| xn | 
Soit n un entier naturel non nul et pair
| lim 0 | 1 | = +∞ | lim 0 | 1 | = +∞ | |
| x² | xn | 
 
		
				    p(x) est un polynôme de degré n  (axn terme de plus grand degré)
					q(x) est un polynôme de degré m (bxm terme de plus grand degré)  
                
| lim a | p(x) = p(a) | 
| lim a | p(x) | = | p(a) | ; q(a)≠0 | 
| q(x) | q(a) | 
| lim +∞ | p(x) = | lim +∞ | (axn) | 
| lim -∞ | p(x) = | lim -∞ | (axn) | 
| lim -∞ | p(x) = | lim -∞ | (axn) | 
| lim +∞ | p(x) | = | lim +∞ | axn | 
| q(x) | bxm | |||
| lim -∞ | p(x) | = | lim -∞ | axn | 
| q(x) | bxm |